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Mode-coupling effects on self-diffusion in a simple fluid at freezing
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The suppression of the self-diffusion constént for a simple fluid in the long-time limit in comparison to
the corresponding short-time or bare value is computed taking into account the mode-coupling effects to lowest
order. We obtain a value @, /D,=0.11 at the freezing density in close agreement with the observed value
of 0.10 for different system$S1063-651X96)03307-1

PACS numbeps): 47.35:+i, 05.20~y, 05.60:+w

I. INTRODUCTION short-time dynamics of the density correlation was described
in Ref.[7] and here we directly use the result from there for

The single particle dynamics in a fluid is demonstratedthe calculation of the mode-coupling kernel. Using the NSC
through the behavior of the self-diffusion coeffici¢ht. Ina  calculation, we obtain the value B /Dg to be 0.11. This is
dense fluid, the motion of the single particle gets coupled tdn close agreement with the recent results of Lowen, Palberg,
the hydrodynamic or collective modes in the fluid and thisand Simon[2].
produces a suppression of the diffusion constant for a tagged In the next section, we briefly describe the model equa-
particle. The ratio of the long-time self-diffusion constanttions used. Section Ill describes the details of the calculation.
D, to its short or bare valuB, was found to be close to 0.1 We end the paper with a short discussion of the results.
at freezing density for several liquids with different interac-
tion potentials[2]. Subsequently Indrani and Ramaswamy Il. DETAILS OF THE MODEL STUDIED
[3] presented a fully self-consistent mode-coupling calcula-
tion to explain the fall in the value of the long-time diffusion ~ The theory is formulated primarily in terms of the dy-
constant. While this work constitutes an instructive way tonamic correlation functions of collective density and the self-
explain the observed effect qualitatively, the formalism used®r tagged particle density. The normalized density-
by these authors is not proper as was pointed out by FuchgPrrelation function is given by
[4] and also quantitatively not in agreement with the ob-
served result. Mode-coupling theof,6] has been quite (dp(q,t)Sp(—q,1))
successfully used over the last few years to explain the dy- ¥a.H)= (6p(q,0)8p(—q,0))’ @
namics of dense liquids approaching the onset of the glass
transition. For s_upercooled liquids, a self-consistent form of haore the Laplace transformy(q,z) of the density-
the mode—coup_llr_lg theory has been usgd. In these models the relation function defined as,
transport coefficients are expressed in terms of hydrody-
namic correlation functions in a self-consistent manner. This -
produces a feedback to the transport processes from the slow #(Q,2)=—i j dte?ly(q,t), 2
decay of correlations in the system. While the self-consistent 0
model has worked for the deep super cooled densities, for
moderate densities it presents an over correction of the trangas a simple continued fraction representation involving the
port coefficients. The dynamics of the liquid at moderategeneralized transport coefficiebBt(q,z)
densities can be described by the non-self-consigi¢80)
treatment of the mode-coupling effect. In this work, we

adopt such an approach. The usefulness of this approach was #(q,2)= — Y €)
discussed in detail if7]. e
We consider the usual equations obtained for the mode- z+iD(q,2)

coupling kernels using fluctuating hydrodynami@&9] or

microscopic method§10] for the density correlation func- with Qézqzl[ﬂm Sq)] as the microscopic frequency of the
tions and the self-correlation functions. This is also in agreeliquid state dynamics. Similarly, the self-correlation function
ment with the comment of Ref4]. In computing the relax- or the Van Hove correlation function is obtained as

ation of the correlation, we use the correlation functions

from bare theory—in other words, we treat the mode-

coupling kernels in a non-self-consistent manner. Since the $%(0,2)= B v — (4)
correlation functions accounted for the renormalization of z—+
the transport coefficients are taken from dynamical equations z+il'*(q,2)

governed by the short-time or bare transport coefficients, in
our approach one has to choose a model for short-time dyahere Q§q= q?/(Bm) and I'S(q,z) are the appropriate
namics for a hard sphere system. The details of the model fanemory functions for the self-correlation function. The
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memory functions for the self- and density-correlation func-with the wave vector expressed in the dimensionless form,
tions can be generally split into a short-time part and a longx=qo and timet rescaled in terms of the unit of tims,.
time part, A andg(x) are dimensionless quantities obtained as,

D(9,2)=[T'o(q) +I'mda,2)], ©) A=7l'5,  g(x)=To/T5. (12

©6) Here, we choose the time scalgin terms of the short-time
or bare diffusion constant in the systemas= 0%/Dg.

A andg(x) depend on the model used for the short-time
dynamics of the system. In the present work we use the
I,';‘fhort—time—kinetic model11] used for a simple hard sphere
system. Equation§l0) and(11) are solved using a linearized

I'(q,2)=[T'5(q) +I'5(a,2)].

The short-time part in the memory functions refers to dy-
namics of the liquid over time scales in which the fluid par-
ticles undergo uncorrelated collisions. The second terms i
Egs.(5) and(6) describe the so called mode-coupling effects ode-coupling scheme in which the mode-counling terms
which become important over long-time scales accountin 7) and (8 ping imated b luti £ th ping d
for correlated collisions. Explicit expressions for the mode-; ) an (8) are approximated by solutions of the correspond-
coupling terms can be obtained from theories of the quuidIng Imea_r _equatlo_ns for Fhe cor_relatlon functions. At U‘Odef'
state and are given H,6,11,12 ate densities, as is cons@ered_ in the pres_ent work, this repro-

duces the correct relaxation times and will be used here for
d(k) computing the mode-coupling effects on the self-diffusion
T nl(0,1) = j 3 V(q—k K y(la—k|.Du(kp), (7)  coefficient

(2m)°n
. NUMERICAL RESULTS
where the mode-coupling vertéx(q—Kk,k) is given by
The long-time diffusion coefficierd, can be obtained in

S5 2. o 2 terms of the memory functioff? being renormalized with
V(g—k k):i (k)-ane(k) +4-(a—kne(lg—k|) the mode-coupling contribution. The ratio Bf_ to Dy is
"pm q given by,
X S(|a—k[)S(k), D, 1
B, 143 13

with c(K) being the direct correlation function for the liquid.
Similarly, the memory function for the self-correlation func- \yheres is now given by
tion has the mode-coupling contribution,

_E A _ 2 -1 * S
3= sfo dxx*1—S(x)]°S(x) JO dtpS(x,t) (X,t).

d(k
Fﬁ’lc(qat):fQ;ﬁvs(q_klk)(ﬁsdq_k|1t)1//(k:t)! (14)
8
® For computing®, from the above expressiaii4) the upper
where the corresponding mode-coupling vertéXq—k,k)  cutoff A of the wave vector integral is chosen to be equal to
is given by 25 which corresponds to a short enough length so that all the
relevent structural effects are taken into account and for in-
creasing the cutoff further does not produce much change in
the calulated value of. The cutoff in the time integral is

; ; ; extended to a long enough time scale to ensure convergence
Equations(3) and(4) form a closed set of nonlinear integral . ; . .
q N @ 9 of the integral. The static structure factorx¥(is approxi-

equations for the density- and self-correlation functions. Wern ted by the Percus-Yevick exoression for a hard spher
inverse Laplace transform Eq®) and(4) to write down the ated by the Fercus-revick expression lor a nhard sprere

following second order differential equations in time for the zgﬁﬁi@u}[/iv(l)tr?saa¥62§E1W5;:§ Ezzrr]eazlao:or-:-hsilrcoodnes:ig(t)eur?tlIrzlag-
density- and self-correlations, respectively. p 9 P

proach, i.e., the correlation functions in the mode-coupling
_ kernels are solutions of linear equations.
g(X) (X, 1) + x2S~ () (X, 1) In Fig. 1, we plot for the packing fraction given by
n=0.47, the decay of the density correlation function
#(q,t) (renormalized due to the mode-coupling effagith
=0 (100  time for the wave vector equal to the peak of the structure
factor. The behavior for the correlation function without
mode coupling is also shown by the dashed line. Figure 2 is
and similar to Fig. 1 but is for the self-correlation function. Using
the renormalized correlation functions, we can estimate the
éf;s(x,t)+x2¢5(x,t) integral given in(14) to getD, /Dy as a function of the
density. In Table | we show the ratio &f, /D, as obtained
in the present work with the resulfg] from the computer
-0, (11) simulation of different systems. It is the universal val@é
of the peak of the static structure factoe 2.85 that is cru-

VE(q—k.k) = (K- q)2[nc(k) 125(K). )

P(x,t)+A

t .
+ f X t—71) (X, 7)d7
0

H5(X, )+ A

t .
+ f ISdXx,t—=7) %X, 7)d7
0



54 MODE-COUPLING EFFECTS ON SELF-DIFFUSION IN . .. 465

v(a,t)
04a)

0.6

FIG. 1. Decay of the collective density correlations with time  FIG. 2. Decay of the self-correlations with timt&=t/7, at a
t* =t/7, at a wave vectog*=qo corresponding to the structure wave vectorq*=qo corresponding to the peak of the structure
factor peak. Solid line represents the data from the NSC calculatiorfactor. Solid line represents the data from the NSC calculation.
Dashed line shows the decay without the mode-coupling effects. Dashed line shows the decay without the mode-coupling effects.

cial in determining the mode-coupling contribution. If we Fuchs. In the present work we consider the proper mode-
use the static structure factor with and without the Verlet-coupling equations used in the literature fienseliquids.
Weiss correction the maximum of the structure factor peakdowever, since the densities considered are near the freezing
reaches this value at packing fractions-0.494 and 0.470, point we do not take a fully self-consistent approach as is
respectively. Indeed the ratid, /D, in both the cases are done in theories of glass transition applicable to supercooled
equal to 0.11 showing the relevance of the valu@f) at  densities. A non-self-consistent calculatiof] at these den-
the peak. The ratio of the long-time diffusion coefficient sities also gives the right estimate for the viscosity of the
D, to the short-time diffusion coefficient as predicted from aliquid. Our method obtains a value &f /Dy~0.11, which
fully self-consistent theory is also shown in the table. Atis close to the observed value.
densities near freezing the fully self-consistent approxima- The mode-coupling contribution to the diffusion coeffi-
tion produces an overestimation of the mode-coupling effectcient considered here signifies the effects coming from the
As the packing fraction increases in the supercooled regionoupling of the single particle density fluctuation with the
beyond freezing densities a fully self-consistent calculatiorhydrodynamic mode of collective density fluctuation in the
iS necessary. fluid. This effect becomes enhanced at higher densities due
to correlations building at successive collisions for a fluid
IV. DISCUSSION particle, giving rise to the so called ring collisions in a ki-
netic description. This produces the slower power law decay
We have considered here the mode-coupling contributionsf correlations in the fluid termed as long-time tdilsS] for
to the self-diffusion coefficient for a tagged particle andthe transport coefficients as against a purely exponential de-
computed the ratio of the short-time or bare diffusion con-cay of correlations. The latter is due to the uncorrelated ran-
stant D, to the long-time diffusion constarD, . Recent dom collisions of the fluid particles and is represented
works [3] have considered this ratio using a fully self- through the short-time or bare transport coefficients. In the
consistent mode-coupling theory and report a value of 0.05resent work we focus on the effect of this cooperative dy-
In a wide range of system&) /Dy was seen to be close to namics on the slowing of the long-time diffusion process in
0.1 at freezing. Moreover, the formalism used[8] is not  comparison to its short-time value. In computing the mode-
proper as was pointed out in a subsequent comment byoupling effects we have considered only the coupling of the

TABLE I. Comparison ofD, /Dy at freezing, as obtained from theory and computer simulation.

System Structure factor peak D_/Dg
One component plasni2] 2.82 0.097
Hard spherg2] 2.85 0.099
Self-consistenf4] 2.85 0.002

Non-self-consistenfpresent work 2.85 0.107
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self-density mode to the collective density fluctuations in thecoupling theories of glass transition is not crucial at the den-
fluid. At freezing density this is the dominant coupling in- sity we are considering in the present work. It is only at

stead of the coupling between the self-diffusion modelf. ~ Supercooled densities when the density fluctuations tend to

However, the present result may be further improved by takCause a total structural arrest, the couplings to current fluc-
. ' . tuations finally restores the ergodicity in the system eliminat-
ing into account the effect of couplings of the other hydro-

. . . : ing a sharp transition to a nonergodic phase and all correla-
dynamic modes in the theory at this ordé5]. It is also

) S tions finally decay over long enough time scales. In the
useful to note that the cutoff mechanidit6,g| that elimi-  present theory for densities near freezing point this is not

nates the dynamic instability from self-consistent mode-very important.
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