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The suppression of the self-diffusion constantDL for a simple fluid in the long-time limit in comparison to
the corresponding short-time or bare value is computed taking into account the mode-coupling effects to lowest
order. We obtain a value ofDL /D 050.11 at the freezing density in close agreement with the observed value
of 0.10 for different systems.@S1063-651X~96!03307-7#

PACS number~s!: 47.35.1i, 05.20.2y, 05.60.1w

I. INTRODUCTION

The single particle dynamics in a fluid is demonstrated
through the behavior of the self-diffusion coefficient@1#. In a
dense fluid, the motion of the single particle gets coupled to
the hydrodynamic or collective modes in the fluid and this
produces a suppression of the diffusion constant for a tagged
particle. The ratio of the long-time self-diffusion constant
DL to its short or bare valueD0 was found to be close to 0.1
at freezing density for several liquids with different interac-
tion potentials@2#. Subsequently Indrani and Ramaswamy
@3# presented a fully self-consistent mode-coupling calcula-
tion to explain the fall in the value of the long-time diffusion
constant. While this work constitutes an instructive way to
explain the observed effect qualitatively, the formalism used
by these authors is not proper as was pointed out by Fuchs
@4# and also quantitatively not in agreement with the ob-
served result. Mode-coupling theory@5,6# has been quite
successfully used over the last few years to explain the dy-
namics of dense liquids approaching the onset of the glass
transition. For supercooled liquids, a self-consistent form of
the mode-coupling theory has been used. In these models the
transport coefficients are expressed in terms of hydrody-
namic correlation functions in a self-consistent manner. This
produces a feedback to the transport processes from the slow
decay of correlations in the system. While the self-consistent
model has worked for the deep super cooled densities, for
moderate densities it presents an over correction of the trans-
port coefficients. The dynamics of the liquid at moderate
densities can be described by the non-self-consistent~NSC!
treatment of the mode-coupling effect. In this work, we
adopt such an approach. The usefulness of this approach was
discussed in detail in@7#.

We consider the usual equations obtained for the mode-
coupling kernels using fluctuating hydrodynamics@8,9# or
microscopic methods@10# for the density correlation func-
tions and the self-correlation functions. This is also in agree-
ment with the comment of Ref.@4#. In computing the relax-
ation of the correlation, we use the correlation functions
from bare theory—in other words, we treat the mode-
coupling kernels in a non-self-consistent manner. Since the
correlation functions accounted for the renormalization of
the transport coefficients are taken from dynamical equations
governed by the short-time or bare transport coefficients, in
our approach one has to choose a model for short-time dy-
namics for a hard sphere system. The details of the model for

short-time dynamics of the density correlation was described
in Ref. @7# and here we directly use the result from there for
the calculation of the mode-coupling kernel. Using the NSC
calculation, we obtain the value ofDL /D0 to be 0.11. This is
in close agreement with the recent results of Lowen, Palberg,
and Simon@2#.

In the next section, we briefly describe the model equa-
tions used. Section III describes the details of the calculation.
We end the paper with a short discussion of the results.

II. DETAILS OF THE MODEL STUDIED

The theory is formulated primarily in terms of the dy-
namic correlation functions of collective density and the self-
or tagged particle density. The normalized density-
correlation function is given by

c~q,t !5
^dr~q,t !dr~2q,t !&

^dr~q,0!dr~2q,0!&
, ~1!

where the Laplace transformc(q,z) of the density-
correlation function defined as,

c~q,z!52 i E
0

`

dteiztc~q,t !, ~2!

has a simple continued fraction representation involving the
generalized transport coefficientD(q,z)

c~q,z!5
1

z2
Vq

2

z1 iD ~q,z!

, ~3!

with Vq
25q2/@bmS(q)# as the microscopic frequency of the

liquid state dynamics. Similarly, the self-correlation function
or the Van Hove correlation function is obtained as

fs~q,z!5
1

z2
Vsq

2

z1 iGs~q,z!

, ~4!

where Vsq
2 5q2/(bm) and Gs(q,z) are the appropriate

memory functions for the self-correlation function. The
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memory functions for the self- and density-correlation func-
tions can be generally split into a short-time part and a long-
time part,

D~q,z!5@G0~q!1Gmc~q,z!#, ~5!

Gs~q,z!5@G0
s~q!1Gmc

s ~q,z!#. ~6!

The short-time part in the memory functions refers to dy-
namics of the liquid over time scales in which the fluid par-
ticles undergo uncorrelated collisions. The second terms in
Eqs.~5! and~6! describe the so called mode-coupling effects
which become important over long-time scales accounting
for correlated collisions. Explicit expressions for the mode-
coupling terms can be obtained from theories of the liquid
state and are given by@5,6,11,12#

Gmc~q,t !5E d~kW !

~2p!3n*
V~q2k,k!c~ uq2ku,t !c~k,t !, ~7!

where the mode-coupling vertexV(q2k,k) is given by

V~q2k,k!5
1

bm
F ~kW !•qŴnc~k!1qŴ •~qW 2kW !nc~ uq2ku!

q
G 2

3S~ uq2ku!S~k!,

with c(k) being the direct correlation function for the liquid.
Similarly, the memory function for the self-correlation func-
tion has the mode-coupling contribution,

Gmc
s ~q,t !5E d~kW !

~2p!3n*
Vs~q2k,k!fs~ uq2ku,t !c~k,t !,

~8!

where the corresponding mode-coupling vertexVs(q2k,k)
is given by

Vs~q2k,k!5~kW•qŴ !2@nc~k!#2S~k!. ~9!

Equations~3! and~4! form a closed set of nonlinear integral
equations for the density- and self-correlation functions. We
inverse Laplace transform Eqs.~3! and~4! to write down the
following second order differential equations in time for the
density- and self-correlations, respectively.

c̈~x,t !1DFg~x!ċ~x,t !1x2S21~x!c~x,t !

1E
0

t

Gmc~x,t2t!ċ~x,t!dtG50 ~10!

and

f̈s~x,t !1DF ḟs~x,t !1x2fs~x,t !

1E
0

t

Gs
mc~x,t2t!ḟs~x,t!dtG50, ~11!

with the wave vector expressed in the dimensionless form,
x5qs and timet rescaled in terms of the unit of timet0 .
D andg(x) are dimensionless quantities obtained as,

D5t0G0
s , g~x!5G0 /G0

s . ~12!

Here, we choose the time scalet0 in terms of the short-time
or bare diffusion constant in the system ast05s2/D0 .

D andg(x) depend on the model used for the short-time
dynamics of the system. In the present work we use the
short-time-kinetic model@11# used for a simple hard sphere
system. Equations~10! and~11! are solved using a linearized
mode-coupling scheme in which the mode-coupling terms
~7! and~8! are approximated by solutions of the correspond-
ing linear equations for the correlation functions. At moder-
ate densities, as is considered in the present work, this repro-
duces the correct relaxation times and will be used here for
computing the mode-coupling effects on the self-diffusion
coefficient.

III. NUMERICAL RESULTS

The long-time diffusion coefficientDL can be obtained in
terms of the memory functionGs

q being renormalized with
the mode-coupling contribution. The ratio ofDL to D0 is
given by,

DL

D0
5

1

11S
, ~13!

whereS is now given by

S5
2

3E0
L

dxx4@12S~x!#2S~x!21E
0

`

dtfs~x,t !c~x,t !.

~14!

For computingS from the above expression~14! the upper
cutoff L of the wave vector integral is chosen to be equal to
25 which corresponds to a short enough length so that all the
relevent structural effects are taken into account and for in-
creasing the cutoff further does not produce much change in
the calulated value ofS. The cutoff in the time integral is
extended to a long enough time scale to ensure convergence
of the integral. The static structure factor S(x) is approxi-
mated by the Percus-Yevick expression for a hard sphere
system with a Verlet-Weiss correction. The mode-coupling
contributions are computed using a non-self-consistent ap-
proach, i.e., the correlation functions in the mode-coupling
kernels are solutions of linear equations.

In Fig. 1, we plot for the packing fraction given by
h50.47, the decay of the density correlation function
c(q,t) ~renormalized due to the mode-coupling effect! with
time for the wave vector equal to the peak of the structure
factor. The behavior for the correlation function without
mode coupling is also shown by the dashed line. Figure 2 is
similar to Fig. 1 but is for the self-correlation function. Using
the renormalized correlation functions, we can estimate the
integral given in~14! to get DL /D0 as a function of the
density. In Table I we show the ratio ofDL /D0 as obtained
in the present work with the results@2# from the computer
simulation of different systems. It is the universal value@3#
of the peak of the static structure factor ('2.85 that is cru-
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cial in determining the mode-coupling contribution. If we
use the static structure factor with and without the Verlet-
Weiss correction the maximum of the structure factor peak
reaches this value at packing fractionsh50.494 and 0.470,
respectively. Indeed the ratioDL /D0 in both the cases are
equal to 0.11 showing the relevance of the value ofS(k) at
the peak. The ratio of the long-time diffusion coefficient
DL to the short-time diffusion coefficient as predicted from a
fully self-consistent theory is also shown in the table. At
densities near freezing the fully self-consistent approxima-
tion produces an overestimation of the mode-coupling effect.
As the packing fraction increases in the supercooled region
beyond freezing densities a fully self-consistent calculation
is necessary.

IV. DISCUSSION

We have considered here the mode-coupling contributions
to the self-diffusion coefficient for a tagged particle and
computed the ratio of the short-time or bare diffusion con-
stant D0 to the long-time diffusion constantDL . Recent
works @3# have considered this ratio using a fully self-
consistent mode-coupling theory and report a value of 0.05.
In a wide range of systems,DL /D0 was seen to be close to
0.1 at freezing. Moreover, the formalism used in@3# is not
proper as was pointed out in a subsequent comment by

Fuchs. In the present work we consider the proper mode-
coupling equations used in the literature fordenseliquids.
However, since the densities considered are near the freezing
point we do not take a fully self-consistent approach as is
done in theories of glass transition applicable to supercooled
densities. A non-self-consistent calculation@7# at these den-
sities also gives the right estimate for the viscosity of the
liquid. Our method obtains a value ofDL /D0;0.11, which
is close to the observed value.

The mode-coupling contribution to the diffusion coeffi-
cient considered here signifies the effects coming from the
coupling of the single particle density fluctuation with the
hydrodynamic mode of collective density fluctuation in the
fluid. This effect becomes enhanced at higher densities due
to correlations building at successive collisions for a fluid
particle, giving rise to the so called ring collisions in a ki-
netic description. This produces the slower power law decay
of correlations in the fluid termed as long-time tails@13# for
the transport coefficients as against a purely exponential de-
cay of correlations. The latter is due to the uncorrelated ran-
dom collisions of the fluid particles and is represented
through the short-time or bare transport coefficients. In the
present work we focus on the effect of this cooperative dy-
namics on the slowing of the long-time diffusion process in
comparison to its short-time value. In computing the mode-
coupling effects we have considered only the coupling of the

FIG. 1. Decay of the collective density correlations with time
t*5t/t0 at a wave vectorq*[qs corresponding to the structure
factor peak. Solid line represents the data from the NSC calculation.
Dashed line shows the decay without the mode-coupling effects.

FIG. 2. Decay of the self-correlations with timet*5t/t0 at a
wave vectorq*[qs corresponding to the peak of the structure
factor. Solid line represents the data from the NSC calculation.
Dashed line shows the decay without the mode-coupling effects.

TABLE I. Comparison ofDL /D0 at freezing, as obtained from theory and computer simulation.

System Structure factor peak DL /D0

One component plasma@2# 2.82 0.097
Hard sphere@2# 2.85 0.099
Self-consistent@4# 2.85 0.002
Non-self-consistent~present work! 2.85 0.107
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self-density mode to the collective density fluctuations in the
fluid. At freezing density this is the dominant coupling in-
stead of the coupling between the self-diffusion modes@14#.
However, the present result may be further improved by tak-
ing into account the effect of couplings of the other hydro-
dynamic modes in the theory at this order@15#. It is also
useful to note that the cutoff mechanism@16,8# that elimi-
nates the dynamic instability from self-consistent mode-

coupling theories of glass transition is not crucial at the den-
sity we are considering in the present work. It is only at
supercooled densities when the density fluctuations tend to
cause a total structural arrest, the couplings to current fluc-
tuations finally restores the ergodicity in the system eliminat-
ing a sharp transition to a nonergodic phase and all correla-
tions finally decay over long enough time scales. In the
present theory for densities near freezing point this is not
very important.
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